City of Martinsville Annual Water Quality Report for 2020

We are pleased to report no violations of Primary Contaminants Levels (PMCL) were exceeded during 2020. The Water Resources Department is providing this report for the calendar year 2020 to inform you about the quality of your drinking water. Our goal is to provide you with a safe and dependable supply of drinking water and we want you to be aware of the efforts we make to protect your water supply. The quality of your drinking water must meet State and Federal requirements administered by the Virginia Department of Health (VDH).

GENERAL INFORMATION
As water travels over the surface of the land or through the ground it dissolves with naturally occurring minerals and can pick up substances (referred to as contaminants) resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:
- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- Inorganic contaminants, such as salts and minerals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil or gas production, mining or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production and can also come from gas stations, urban stormwater runoff and septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

A source water assessment of our system has been conducted by the Virginia Department of Health. The reservoir and creeks were determined to be of high susceptibility to contamination, as are virtually all other surface water sources in the State using criteria developed by the State in its approved Source Water Assessment Program. The assessment report consists of maps showing the source water assessment area, an inventory of known land use activities of concern, and documentation of any known contamination within the prior 5 years. Additional information is available by contacting the waterworks representative noted elsewhere in this report.

In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

All drinking water, including bottled drinking water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline (800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines for appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Sources and Treatment
Our main raw water source is the Beaver Creek Reservoir. Supplemental sources, as needed, are provided by a pump station on Leatherwood Creek. Before entering the distribution system, your water is treated at the Martinsville Water Treatment Plant to insure that potentially harmful or otherwise objectionable substances are removed. At the plant, raw water is treated with chlorine for disinfection, alum for coagulation and flocculation, lime and caustic soda are used to raise the pH and add calcium hardness. Fluoride to help reduce tooth decay is also added. The water flows through the sedimentation basins allowing the floc particles to settle out before being filtered. Before water leaves the plant, we add chlorine to maintain a residual throughout the distribution system, sodium hydroxide for pH adjustment, and sodium hexametaphosphate to reduce pipe corrosion.

About Disinfection Byproducts in Drinking Water
Disinfection is an absolutely essential component in the treatment of drinking water, preventing the occurrence and spread of many serious and potentially deadly water-borne diseases. Chlorination is a time proven method for disinfection, but some minute amounts of disinfection byproducts (DBPs) do result in the form of Trihalomethanes (THMs) and Haloacetic acids (HAA5s) as chlorine combines with naturally occurring organic matter (such as leaf debris) in the raw water. Some people who drink water containing THMs or HAA5s in excess of the MCLs over many years may have an increased risk of getting cancer or could experience problems with their liver, kidneys, or central nervous system. The City’s water system was in compliance for DBPs throughout 2020.

Water Quality Results
We routinely monitor for various contaminants in the water supply to meet all regulatory requirements. It is required by the state to make the public aware of any treatment or monitoring violations that may occur during the course of the year. There were no PMCL violations of any drinking water standards during 2020 reporting.

About Lead in Drinking Water
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Martinsville is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. The water is treated by adjusting pH and adding a corrosion inhibitor to minimize leaching of lead and copper from plumbing. When your water has been sitting for several hours you can minimize the potential for lead exposure by flushing your tap for 15 to 30 seconds or until it becomes cold or reaches a steady temperature before using water for drinking or cooking. If you are concerned about lead in your water you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water hotline or http://www.epa.gov/safewater/lead. If you have questions about this report, want additional information about any aspect of your drinking water or want to know how to participate in decisions that may affect water quality, please write to the address below or call 276-403-5137. Regularly scheduled City Council meetings are held on the 2nd and 4th Tuesday of each month at 7:30 PM in the City of Martinsville administration building located at:

55 W. Church Street
Water Resources Department
City of Martinsville
PO Box 1112
Martinsville, VA 24114
Mike Kahle, Water Resource Director
e-mail: mtkahle@cl.martinsville.va.us
Phone: 276-403-5137
G. W. Robertson, Waterplant Manager
e-mail: gwrobertson@cl.martinsville.va.us
Phone: 276-403-5137
WATER QUALITY RESULTS

<table>
<thead>
<tr>
<th>Substance/Unit</th>
<th>MCLG</th>
<th>MCL</th>
<th>Level Found/Range</th>
<th>Violation Date of Sample</th>
<th>Typical Source of Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoride ppm</td>
<td>4</td>
<td>4</td>
<td>Yeastly Daily Avg: 0.60</td>
<td>No Daily</td>
<td>Erosion of natural deposits; water additive which promotes strong tooth, Discharge from fertilizer and aluminum factories.</td>
</tr>
<tr>
<td>Total Coliform MPN/100 mL</td>
<td>0</td>
<td>Present < 3% of samples</td>
<td>< 9% of samples detected during 2020</td>
<td>No Weekly</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>Turbidity NTU</td>
<td>NA</td>
<td>TT=0.50 NTU Max</td>
<td>Max: 0.25 Lowest monthly percentage of samples < 0.1 NTU</td>
<td>No Continuous / Every 2 hrs.</td>
<td>Soil runoff (Turbidity itself is not harmful, but high levels may indicate other treatment problems)</td>
</tr>
<tr>
<td>Total Trichloroethenes ppb</td>
<td>NA</td>
<td>80</td>
<td>Max Rolling Avg: 40 Range: 30-60</td>
<td>No Every 10 days</td>
<td>By-product of drinking water chlorination (See "Disinfection Byproducts" on other side)</td>
</tr>
<tr>
<td>Haloacetic Acids ppb</td>
<td>NA</td>
<td>60</td>
<td>Max Rolling Avg: 44 Range: 30-65</td>
<td>No Every 10 days</td>
<td>By-product of drinking water chlorination (See "Disinfection Byproducts" on other side)</td>
</tr>
<tr>
<td>Total Organic Carbon ppm</td>
<td>NA</td>
<td>TT = TOC removal ratio greater than or equal to 1.0</td>
<td>Yearly Rolling Avg Removal Ratio: 1.00 to 1.66</td>
<td>No Monthly</td>
<td>Naturally present in the environment; Reporting violation</td>
</tr>
<tr>
<td>Chlorine ppm</td>
<td>MRDL = 4</td>
<td>MRDL = 4</td>
<td>Yearly Rolling Avg: 1.42 Range: 1.00 to 2.20</td>
<td>No Every 2 hrs</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Copper ppm</td>
<td>1.00</td>
<td>AL = 1.00</td>
<td>90th Percentile-pased Range: 1.26-1.00</td>
<td>No August 2019</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits</td>
</tr>
<tr>
<td>Lead ppb</td>
<td>0</td>
<td>AL = 0.15</td>
<td>90th Percentile-pased Range: 1.00</td>
<td>No August 2019</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits</td>
</tr>
<tr>
<td>Combined radium pCi/L</td>
<td>0</td>
<td>5</td>
<td>1.1</td>
<td>No May 16</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Sodium ppm</td>
<td>NA</td>
<td>NA</td>
<td>14.5 ppm</td>
<td>No July 2020</td>
<td>Naturally occurring in environment; added by some of the chemical addition at the treatment plant</td>
</tr>
<tr>
<td>Hardness ppm</td>
<td>NA</td>
<td>NA</td>
<td>18 ppm</td>
<td>No July 2020</td>
<td>Measure of naturally occurring hardness metals</td>
</tr>
<tr>
<td>Manganese ppm</td>
<td>NA</td>
<td>50 SMCL</td>
<td>30 ppm</td>
<td>No July 2020</td>
<td>Naturally occurring in the environment; when above the SMCL, can lead to aesthetic problems such as staining/decolorization in sediment</td>
</tr>
<tr>
<td>Aluminum ppb</td>
<td>NA</td>
<td>200 SMCL</td>
<td>274 ppb</td>
<td>Yes July 2020</td>
<td>Naturally occurring and from water additives used to treat water; when above the SMCL, can lead to aesthetic problems (color)</td>
</tr>
</tbody>
</table>

Cryptosporidium - In 2018 The City of Martinsville analyzed 24 samples of source water for cryptosporidium. These samples were collected before any treatment had been applied at the water treatment plant. Cryptosporidium is a microbial pathogen found in surface water throughout the U.S. Ingestion of cryptosporidium may cause cryptosporidiosis, an abdominal infection. Symptoms of infection can include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the illness within a week. However, immune-compromised individuals, infants and small children, and the elderly are at a higher risk. Cryptosporidium must be ingested to cause illness and may also come from sources other than water. The City of Martinsville Department of Water Resources works diligently to optimize the filtration process in order to ensure cryptosporidium removal.

Definitions

Maximum Contaminant Level (MCL) - the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. In developing the standards EPA assumes that the average adult drinks 2 liters of water each day throughout a 70-year life span. EPA generally sets MCLs at levels that will result in no adverse health effects for some contaminants or a one-in-ten-thousand to one-in-a-million chance of having the described health effect for other contaminants.

Maximum Contaminant Level Goal (MCLG) - the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - the level of a drinking water disinfectant below which there is no known or expected risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Non-detects (ND) - lab analysis indicates that the contaminant is not present.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years.

Grains per gallon (gpg) = 17.5 Parts per million

Nephelometric Turbidity Unit (NTU) - is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Secondary Maximum Contaminant Level (SMCL) - non-enforceable guidelines regarding contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water.

Treatment Technique (TT) - a required process intended to reduce the level of a contaminant in drinking water.

Picocuries per liter (pCi/L) - is a measure of the radioactivity in water.

Monitoring Notes

We constantly monitor for various contaminants in the water supply to meet all regulatory requirements. The tables list only those that had some level of detection. Most of results are from 2020, but state allows for some contaminants to be done less frequently.